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A B S T R A C T   

In the era of big data, the ubiquity of location-aware portable devices provides an unprecedented opportunity to 
understand inhabitants’ behavior and their interactions with the built environments. Among the widely used 
data resources, mobile phone data is the one passively collected and has the largest coverage in the population. 
However, mobile operators cannot pinpoint one user within meters, leading to the difficulties in activity infer-
ence. To that end, we propose a data analysis framework to identify user’s activity via coupling the mobile phone 
data with location-based social networks (LBSN) data. The two datasets are integrated into a Bayesian inference 
module, considering people’s circadian rhythms in both time and space. Specifically, the framework considers 
the pattern of arrival time to each type of facility and the spatial distribution of facilities. The former can be 
observed from the LBSN Data and the latter is provided by the points of interest (POIs) dataset. Taking Shanghai 
as an example, we reconstruct the activity chains of 1,000,000 active mobile phone users and analyze the 
temporal and spatial characteristics of each activity type. We assess the results with some official surveys and a 
real-world check-in dataset collected in Shanghai, indicating that the proposed method can capture and analyze 
human activities effectively. Next, we cluster users’ inferred activity chains with a topic model to understand the 
behavior of different groups of users. This data analysis framework provides an example of reconstructing and 
understanding the activity of the population at an urban scale with big data fusion.   

1. Introduction 

As the population explodes in urban areas, people are increasingly 
aware of the complexity and importance of human mobility. Specif-
ically, human mobility data is of great significance in assisting urban 
planning (Batty et al., 2012; Hu et al., 2019; Xu et al., 2020; Jiang et al., 
2016), traffic control and travel behavior management (Tu et al., 2020; 
Pan et al., 2013; Xu and González, 2017; Xu et al., 2018), social 
governance (De Nadai et al., 2020; Xu et al., 2019), and discovering the 
influence of natural disasters (Yin et al., 2020), etc. Modeling of human 
mobility also plays a crucial role in the control of COVID-19, from the 
initial spreading stage to the economic reopening stages (Chang et al., 

2020; Kraemer et al., 2020; Mistry et al., 2021; Aleta et al., 2020). The 
traditional collection methods are completed through questionnaire 
surveys. These methods are only applicable to small samples. In addition 
to being difficult to update, they are time-consuming and costly. 
Moreover, the questionnaire surveys are usually collected by users 
recalling their trips on the day, so the specific time of the trip is not 
accurate and some unobtrusive small trips may likely be missed 
(McDonald, 2008). With the development of information and commu-
nication technologies (ICTs), the ubiquity of mobile devices and 
location-based services have provided more channels for the collection 
of individual trajectories, such as geo-information on social networks 
(Liu et al., 2021), location data in mobile phones (Sagl et al., 2014, 
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2016, 2013, 2016), GPS trajectories (Siła-Nowicka et al., 2016), smart 
public transportation cards (Long et al., 2012), credit cards (Clemente 
et al., 2018), and taxis (Xu et al., 2021; Hu et al., 2021). Long et al. 
combined the bus smart card data and the land use map to analyze the 
jobs-housing places and commuting patterns (Long et al., 2012). Hu 
et al. modeled the relationship between urban functional structure and 
traffic spatial interaction to classify urban functions at the road segment 
level (Hu et al., 2021). 

Each type of data has its own shortcomings. The social network data 
are actively shared by the users and they do not always check in at every 
visited location. That is, the social network data can not collect the 
continuous sequence of individual mobility behavior. In addition, social 
network data can not uniformly cover the population due to the various 
popularity of location-aware applications in different ages. In contrast, 
mobile phone data can record a user’s continuous movement behavior 
but the recorded locations are derived from the interacted base stations 
rather than the actual location. The covering radii of base stations range 
from 50 meters in crowded urban regions to about 300 meters in rural 
areas, indicating that we can not directly identify the users’ activity from 
the mobile phone data. 

Targeting inferring the activity type of each individual mobile phone 
user, we desire to consider not only the possible activities in the area 
covered by the interacted base station but also the pattern of the 
attractiveness of different types of facilities. To this end, we couple 
mobile phone data with two other datasets, POI data, and LBSN data. 
The POI dataset provides the longitude, latitude, and type of each fa-
cility, implying the association between the semantic and spatial infor-
mation. The LBSN dataset provides the attractive flow of each type of 
facility every timeslot (e.g., 15 min, 1 h), implying the association be-
tween the semantic and temporal information. Through integrating 
these datasets, we are able to consider both temporal and spatial con-
straints. To this end, we propose a Bayesian inference model to assign a 
possibility to each activity type given a user’s arrival time and desti-
nation. Taking Shanghai as an example, we leverage the anonymized 
mobile phone data of 1,000,000 residents during two weeks. The mobile 
operator records not only the call detail but also the usage of internet 
data, namely XDRs. For each user, we first detect significant stay loca-
tions via clustering the records in space with her raw XDR traces, and 
next label these stay locations as home, work (if available), or other. Then 

we devise a Bayesian model to reconstruct the activity chains via 
coupling the stay locations with the POI information and visitation 
pattern, extracting from the LBSN data. The reconstruction results are 
compared with a real-world dataset collected by Dianping (Dianping, 
2022), an online platform for discovering local businesses and services 
in China. The validation results show that our model can effectively 
capture the laws of human activities on a large scale. After that, we 
analyze the spatio-temporal patterns of their activity behavior. 
Compared with the American Time Use Survey (ATUS), we find that the 
inhabitants in Shanghai devote more time to work than Americans and 
they have more involvement in activities at home than outdoors. We 
also use a topic model to classify the users into six groups based on the 
patterns of their inferred activity chains and analyze their behavior 
characteristics of each type. Overall, the key contribution of our study is 
the new data analysis framework that can assist in modeling human 
activity patterns at an urban scale with big data fusion, providing the 
basis for developing smart cities. The complete data analysis framework 
is presented in Fig. 1, including data sources in green cells, intermediate 
results in yellow cells, key algorithms in orange cells, and results in 
purple cells. 

2. Related work 

2.1. Social network data and mobile phone data analysis 

In the information era, with the popularity of location-based services 
on personal mobile phones, people can share their current Location 
anytime and anywhere, forming location-based social networks (LBSN). 
Typical LBSN data, including Foursquare and Dianping, record the 
anonymized user ID, timestamp, location, and the visited facility in each 
item, providing an opportunity to understand the interaction between 
the population and the built environments (Huang and Wong, 2016; Tu 
et al., 2017; Hasan et al., 2013; Calafiore et al., 2021; Gao et al., 2017). 
Using the Twitter data for Washington, DC, Huang et al. introduced an 
approach to analyzing the activity patterns with different socioeconomic 
statuses (Huang and Wong, 2016). Via combining the Foursquare and 
Twitter data, Hasan et al. found that people tend to select places with 
diminishing probability following a Zipf’s law (Hasan et al., 2013). 
Using Foursquare to provide insight into the urban structure, Calafiore 
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Fig. 1. Pipeline of the proposed data analysis framework. Cells in green refer to the original input data; cells in yellow refer to the intermediate results; cells in 
orange refer to the methods, including the stay detection, the Bayesian inference model and so on. 
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et al. create a framework for the identification of urban functions (Cal-
afiore et al., 2021). As mentioned before, the social networks data can 
only represent the behavior of a group of the population who frequently 
use social media platforms. 

The mobile phone data, e.g., call detail records (CDRs) and x-detail 
records (XDRs), record the base stations used by the phone users when 
they are making phone calls, sending or receiving messages, or using the 
data-channel, and thus pinpoint users with the locations of base stations. 
The mobile phone data are passively collected by the mobile operators 
and cover a very large proportion of the population. There are a number 
of examples analyzing mobile phone data to study human mobility 
(Jiang et al., 2016; Sevtsuk and Ratti, 2010), daily rhythms (Monsivais 
et al., 2017; Roy et al., YYYY), social network analysis (Fudolig et al., 
2020; Fudolig et al., 2021) and urban spatial structure (Louail et al., 
2015; Lenormand et al., 2015). Jiang et al. presented a mechanistic 
modeling framework to analyze the individual daily mobility including 
stay duration and daily mobility motif distribution (Jiang et al., 2016). 
Via studying the mobile calling activity, Monsivais et al. found that the 
length and timings of urban daily rhythms sensitively depend on the 
seasonal changes of sunlight (Monsivais et al., 2017). Sagl et al. 
employed the self-organizing map (SOM) approach to promote the 
exploration of collective human activity, such as the spatial variations in 
intensity and similarity (Sagl et al., 2014). 

2.2. Human activities 

Mobile phone data is one of the largest data resources depicting 
human mobility behavior in terms of its coverage, but it presents chal-
lenges when attempting to infer user activity because of the coarse 
localization of individual users. To curb this challenge, a naive solution 

is to randomly select one facility or point of interest (POI) from those 
located in the Voronoi polygon of the interacted base station. Such a 
method neglects the heterogeneous visitation patterns of different types 
of facilities. For instance, restaurants always attract large customer 
flows during the noon and evening peak hours, while the shopping malls 
attract more customers on weekends and holidays. Therefore, there is a 
must to consider the attractiveness of different types of facilities. Xie 
et al. proposed to infer the activity type by associating the activity area 
with POIs according to the distance between them (Xie et al., 2009). 
Researchers assumed that the nearer the POI locates to the user, the 
larger probability of the facility the user engaged in Wang (2012), Zhao 
et al. (2015). Besides, researchers also used Lévy model (Rhee et al., 
2011) or gravity model (Goh et al., 2012) to infer the probability of users 
accessing various types of POIs. On the other hand, time constraints also 
play important roles in inhabitants’ activities and have been combined 
with space constraints to infer individuals’ activity types (Aslam et al., 
2020; Zhao et al., 2020). For example, if the arrival time is beyond the 
opening hours of a shopping mall, the visit probability of the mall will be 
nearly zero. But this requires the complete opening hours information 
about the POI. Moreover, the rhythm of daily life also impacts the 
attractiveness of each type of POI (Spinsanti et al., 2010). Gong et al. 
inferred the activity types based on the variations in probability of 
population’s activity within a day (Gong et al., 2016). However, for the 
mobile phone data, we can only localize the users in the area sur-
rounding the base station, which covers various types of facilities. These 
distance-based methods can not be directly used to infer individuals’ 
activity types. The surrounding environment is also an important factor 
in detecting activity types. Recent methods infer the activity of users 
with their trajectory similarities to the ones with known activities (Liu 
et al., 2021; Cai et al., 2016). Such methods require a large number of 
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Fig. 2. Statistic characteristics of the XDRs 
data and the estimated travel demand. (A) 
Number of records of raw data in each hour 
during one weekday. (B) Distribution of the 
number of records per user per day. (C) Dis-
tribution of the time interval between two 
consecutive records of the same user. (D) Dis-
tribution of the number of daily visited loca-
tions, following a log-normal distribution. 
Mobile phone users visit nearly 5 locations per 
day on average. (E) Distribution of the number 
of daily travel distances, following a log- 
normal distribution. The average daily travel 
distance is 5.75 km in Shanghai. (F) Fraction of 
travel demands of different trip purposes by 
the hour including home-based work (HBW), 
home-based other (HBO), and non-home based 
(NHB) on weekdays. HBW trips display clearly 
peaks during the morning and evening 
commuting hours. (G) Visualization of travel 
flow during the morning peak hours on one 
typical weekday.   
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labeled trajectories to achieve satisfying performance. In addition, re-
searchers have introduced data analyzing models to understand the 
activity types. For instance, the principal component analysis (PCA) is 
used to identify the main components of daily activities (Eagle and 
Pentland, 2009). In recent years, the latent Dirichlet allocation (LDA) 
model has also played a great role in inferring activity patterns (Zhao 
et al., 2020; Zhao et al., 2018) and identifying major crowd behaviors 
that recur over time (Ferrari et al., 2011). 

3. Datasets description and processing procedure 

This work integrates massive mobile phone data, POI data, and LBSN 
data to understand the interaction between the inhabitants and the fa-
cilities in a big city, Shanghai, China. Call detail records (CDRs) and 
various data records (XDRs) are two typical mobile phone data used to 
study the mobility behavior of the population. CDRs collect the time and 
location of the interactions between users and the base stations when 
they are making phone calls, sending or receiving text messages. XDRs 
additionally collect the internet data accessing activities, recording 
more consecutive mobility traces of users. The XDRs data used for this 
study are collected from 1,000,000 anonymized users in Shanghai for 2 
weeks in January 2014, containing approximately 566 million records 
in total. On average, each person has 40 records per day. In this work, we 
focus on the human behavior on weekdays, thus the records of the 
weekends are eliminated. Each record in XDRs contains an anonymous 
user ID, the time at the instance of the phone activity, the longitude and 
latitude of the interacting base station. Fig. 2A-C illustrate the basic 
statistics of the phone usage behavior in XDRs. Fig. 2A shows the 

temporal distribution of raw XDRs. Fig. 2B presents the distribution of 
the number of daily records, suggesting most users have 30 − 50 records 
every day. Fig. 2C presents the distribution of time intervals between 
two consecutive records of the same user. The XDRs collect most users’ 
locations within a few hours, although some time intervals are large. To 
filter out the days with too sparse records, we split the entire day into 48 
timeslots and eliminate the days if less than 12 timeslots are with records 
(Widhalm et al., 2015). 

The POI dataset adopted in this work contains more than 30,000 
POIs in Shanghai (Long, 2016; Jin et al., 2017). The POIs are grouped 
into 7 categories, including shopping, education, leisure & sport, drink & 
eat, daily life, transport, and other. For each mobile phone user, we keep 
their work, home as two additional POI labels. It is noteworthy that, 
because we do not have access to the full-version check-in data of in-
dividual users in Shanghai, we utilize the Foursquare check-in data in 
Tokyo to derive the visitation pattern of various types of POIs, under the 
assumption that inhabitants in Shanghai and Tokyo share similar life-
styles. Our proposed method has potential to be further refined with 
sufficient data available in the same region. The Foursquare data in 
Tokyo collected over 570,000 check-ins during 10 months from April 
2012 to February 2013 (Yang et al., 2014). Each record includes a 
timestamp, longitude and latitude coordinates, and an activity type. 

In addition, owing to the difference in mobility behavior between 
visitors and local inhabitants, the possible visitors are eliminated in the 
Foursquare data via removing the users whose timespans between the 
first and last check-in records are less than two weeks. For the sake of 
simplicity, we manually match the activity types in Shanghai POIs and 
Foursquare data with our self-defined types, as illustrated in Table 1. 

4. Mobile phone data processing and stay labeling 

4.1. Stay detection with spatial clustering 

Stay points denote locations where the users have stayed for a while 
such as schools and offices. Li et al. proposed the stay point detection 
algorithm that if the distance between a point and its successors is larger 
than the threshold, they measured the time span between the first point 
and the last successor (Li et al., 2008). If the time span is larger than the 
time threshold, the points are labeled stay. 

In the vast majority of cases, the users interact with the nearest base 
station. However, when the nearest base station is fully occupied, new 
connections will be assigned to his/her second nearest station. This 
reassignment results in the mismatching between users and base stations 
in space. Therefore, when detecting people’s stay points, we take such 
particularity of base station data into account. We first cluster the users’ 
footprints using the DBSCAN algorithm within a certain period, 
respecting the chronological order, to filter out the sudden changes in 
location. The footprints belonging to each cluster are replaced by the 
location of the cluster center. The spatial threshold of DBSCAN is set as 
50m in our experiments in Shanghai. After removing the noises in users’ 
trajectories, we identify the significant locations via another DBSCAN 
algorithm to cluster the active locations ignoring their arrival time and 
label the clusters as stay or pass-by. Users engage in activities at stay 
locations and transfer between activities at pass-by locations. The stay 
detection algorithm is shown in Algorithm1. Stays are distinguished 
from pass-bys based on the temporal and spatial thresholds set as 10min 
and 300m in our experiments in Shanghai. Stay locations are identified 
as the regions where a user has stayed over a certain time interval within 
one place. By doing so, the points within a certain distance are recog-
nized as the same active significant place. The users’ mobility traces are 
further updated via filling up the significant places, namely the activity 

Table 1 
Mapping of the activity types, primary POIs, Foursquare and ATUS.  

Activity 
types 

Primary POIs Foursquare ATUS   

Shopping Shopping, Car 
service 

Store, 
Bookstore, …, 
Bookstore, Shop 

Purchasing goods 
and service   

Daily life Banks, Hospitals, 
Religion 

Office, 
Government 
Building, bank, 
Church, …, 
Medical Center, 
Temple 

Organizational, 
Civic, Religious 
activities   

Transport Transportation, 
Railway station, 
…, Airport 

Airport, Bus 
Station, Train 
Station, Subway, 
…, Ferry, Light 
Rail 

–   

Drink & 
Eat 

Catering services Restaurant, 
Café, Diner, …, 
Bakery, 
Breakfast Spot 

Eating and 
drinking   

Leisure & 
Sport 

Recreation, 
Travel 

Park, Bar, Gym, 
Fitness Center, 
…, Hotel, Movie 
Theater, General 

Leisure and 
sports   

Education Research related, 
Culture related, 
School 

College, 
University, …, 
School, Library 

Educational 
activities   

Home Housing estate Home (private), 
Residential 
Building 

Personal care, …, 
Household 
activities   

Work Work location Factory, 
Professional 
Places 

Working and 
work-related 
activities   

Other Other facilities, 
Building 

Building, City, 
Bridge, …, 
Moving Target, 
Event Space 

Other activities, 
…, Telephone 
calls    
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chain.  
Algorithm1: Stay detection 

1: Luc[], j←1, i←1,C←[]

2: add r1 to C 
3: for i←2 to N do 
4: if (ti − tj)⩽10min then ▹Time interval less than 10 min 
5: add ri to C 
6: else 
7: add C to Lu 

8: C←[]

9: j←i 
10: add ri to C 
11: for C in Lu do 
12: Cm←DBSCAN(eps = 0.05,min-sample = 2,C)
13: for each cluster D in Cm do 

▹Loops through each cluster in the records within 10 min 
14: the location of cluster Dx,Dy = Med(xd ,yd)

▹Update locations by the medoid of locations in each cluster 
15: update location: xd,yd = Dx,Dy 

16: Lm = DBSCAN(eps = 0.05,min-sample = 1,Lu)

17: for each cluster U in Lm do 
18: the location of cluster Ux,Uy = Med(xd , yd) ▹Update locations by the 

medoid of locations in each cluster 
19: update location: xd,yd = Ux ,Uy 

20: j←1, i←1 
21: for i←1 to N do ▹Loops through each record of one user 
22: if xi, yi = xj, yj then 
23: j←j + 1 
24: else 
25: if tj − ti⩾10min then ▹Time interval more than 10 min 
26: la←stay 
27: i←j 
28: else 
29: la←pass-by 
30: i←j  

We next present the distribution of the number of visited locations 
per user per day in Fig. 2D. The distribution matches well with a log- 
normal function with the mean value equal to 4.76, suggesting the 
users visited nearly 5 places per day on average. As we have derived the 
stay places for each user, the travel distance between two locations is 
then calculated with the Euclidean distance. By assuming all residents 
start their trips from home and back home at the end of the day, we are 
able to estimate their daily travel distances. Fig. 2E depicts the distri-
bution of users’ daily travel distance. It also follows a log-normal dis-
tribution with the average travel distance equal to 5.75 km. Fig. 2G 
shows the spatial distribution of travel flow above 0.01% of total de-
mand during the morning peak hours on one typical weekday. 

4.2. Stay labelling to identify significant places 

People engage in daily activities with certain regularity. Having 
completed the detection for stay and pass-by locations, we further label 
the stays with semantic information, such as home, work, and other. Most 
research employs simple rules for home detection, which are mainly 
divided into two categories. Usually, home is identified as the location 
with the most records during the night or the location that has the most 
records above a predefined threshold (Jain et al., 1999; Tizzoni et al., 
2014). In this work, we consider the daily life habits. That is, the in-
habitants prefer to stay at home during the night of weekdays and 
daytime during weekends or stay at offices during working hours on 
weekdays. Therefore, we assume the frequently visited location from 
22:00 to 6:00 every day as her or his home. If the user visits the identified 
home less than 30% of the total number of records, we remove this user 
as she/he probably be a temperate visitor to the city. Thus, the users 
refer to residents if not specially illustrated in the following context. We 
compared the spatial distribution of the home locations of the active 
mobile phone users in XDRs and the population distribution from the 6th 
national census data in 2010, as shown in Fig. 3. The number of users in 
XDRs is evenly distributed to the population distribution of Shanghai by 
Jiedao, reflecting the reliability of the data sources we adopt. Similarly, 
we label the most frequently visited place between 8:00 and 18:00 on 
weekdays as work. Note that if the identified work place is less than 
0.5km from home or visited less than twice a week, the user probably not 
be a commuter and the stay location is labeled as other. The remaining 
unidentified stay locations are classified as other. 

Next, according to the availability of the work place, we group resi-
dents into commuters and non-commuters because of their obviously 
different mobility behavior. After the types of stay locations are identi-
fied, we can further label their trips into three categories, (i) home- 
based-work (HBW), representing the trips between home and work 
places; (ii) home-based-other (HBO), representing the trips between 
home and other places; (iii) non-home-based (NHB), representing the 
trips between two other places or between work and other places. Fig. 2F 
depicts the fraction of hourly trips in these three categories. The peak 
and trough of HBW travel demand are very pronounced in the curve, and 
the two peaks correspond to the morning and evening commuting peak 
hours. 

Fig. 4 illustrates the joint distribution of the arrival time and stay 
duration for home, work, and other. For both commuters and non- 
commuters, there are two main clusters in home. The lower cluster 
represents the activities at home during the daytime, and the upper 
cluster indicates the activities during the night. The upper tilts to the 
lower right, suggesting that the later the user arrives home, the less time 
they will stay. Compared with commuters, the lower in the home 

0 - 3,300

3,300 - 6,600

9,900 - 13,200

13,200 - 16,400

6,600 - 9,900

Fig. 3. Spatial distribution of home locations of the mobile phone users in XDRs (A) and the population from 6th national census data in 2010 (B) by 
Jiedao. The users’ address in XDRs depends on the inferred home. The shade color from dark to light corresponds to the population from more to less. 
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activities of non-commuters is darker, showing that non-commuters stay 
much more time at home during the daytime than commuters. In the 
distribution of other activities, we can observe a more evident peak in the 
night for commuters than non-commuters, confirming the fact that 
commuters only can spend a long-time on other activities at night. In 
contrast, the other activities of non-commuters increase during the day 

and reduce at night. As to the work activity, from Fig. 4A, we can observe 
that work can be split into three hotspots. The lower two hotspots 
represent the work with two time intervals, morning and afternoon 
because some works leave their workplace for a break in the noon. The 
upper hotspot indicates that the workers stay in the work place all day 
for about 8 h. 

Base station
Candidate POIs
Boundary of walkable space
Boundary of Voronoi 
tessellation of Base station

Fig. 5. Traveler’s activity reconstruction with 
Bayesian inference and the LBSN data. (A) Distri-
bution of the arrival time of various types of activity 
LBSN data, which are collected from Foursquare 
check-ins in Tokyo. The temporal granularity is 15 
min. (B) Selection of the candidate POIs for the 
Bayesian inference framework. The solid black poly-
gons present the Voronoi diagram of the base stations 
(red dots). The blue dotted circle refers to the walk-
able space of the users. The grey shaded area shows 
the selected region, in which all of the POIs (orange 
stars) can be selected by the users visiting the target 
base station. (C) Distribution of the arrival time of the 
different types of activities estimated by coupling the 
XDRs and LBSN data. It is worth noting that home and 
work activities are inferred from daily habits, rather 
than Bayesian inference model.   
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5. Activity inference with Bayesian estimation 

Due to the rhythm of inhabitants’ daily lives, the temporal access 
patterns differ across activity types. For example, the eating activities 
have evident noon and evening peak hours compared to other activities. 
On the other side, because of the coarse localization of mobile phone 
data, we can only limit the possibly visited POIs within a polygon based 
on the base station locations. Therefore, the choice of POI needs to 
consider both the POI density within the polygon and the access patterns 
of different activity types. Here, we propose a Bayesian activity infer-
ence model that relies on the distribution of POIs and the temporal 
pattern of different activity types extracted from the LBSN data. 

5.1. Bayesian activity inference model 

We convert the activity type inference problem as estimating the 
probability of various activity types at the given arrival time and place. 
The possible visited POIs, a.k.a. candidate POIs, are selected based on 
the Voronoi polygon of the base station. In practice, people display 
different visitation patterns to various types of POIs. For instance, res-
taurants always have evident peaks during the evening hours, while 
cultural facilities always attract more visitors on weekends. Fig. 5A 
presents the temporal change of the attractiveness of different types of 
POIs in the LBSN data. As expected, the vast majority of the activities 
happen during the daytime; daily life, education, and work activities 
display a high attractiveness during the morning hours; drink & eat and 
home show two evident peaks during the morning and evening hours; 
leisure & sport and shopping show evident peak during the evening hours. 
On the other side, daily life, education, and work activities have a much 
larger probability to be visited than the leisure & sport and shopping ac-
tivities during the morning peak hours. 

With consideration of such temporal inhomogeneity of visitation 
patterns, our target is to estimate the conditional probability of various 

POIs locating around the users’ destinations. As shown in Fig. 5B, we 
first select the candidate POIs (the orange stars) in the Voronoi polygon 
of the base station visited by the user. To avoid selecting some distant 
POIs locating in the polygons near the boundary of Shanghai, we also 
eliminate the ones outside the 900 meters buffer of the base station (the 
blue dashed circle). Let D = (c, t) denotes the activity with the propor-
tion c of the candidate POIs’ types and the time t. Next, given a set of 
POIs, we set the visit probability of the POI type Oi as p(Oi|c,t), where i =

1, 2, …, 7, representing each activity type except home and work. Ac-
cording to the Bayes theorem, the probability of visiting a certain POIs 
type is 

p(Oi|c, t) =
p(t|Oi, c)p(Oi|c)p(c)

p(c, t)
. (1)  

It is assumed that the time and location of activity are independent of 
each other, then p(t|Oi,c) = p(t|Oi). The probability of visiting a certain 
type of POIs can be simplified to: 

p(Oi|c, t) =
p(t|Oi)p(Oi|c)

p(t)
. (2)  

where p(Oi|c) represents the probability of selecting a certain POI type in 
the case of the given distribution of all POI types in the activity region, 
p(t|Oi) represents the temporal probability to visit a certain POI type, 
and p(t) is the probability of accessing the timeslot t. Since we use a time 
granularity of 10 min, there are a total of 144 timeslots in a day, i.e. p(t)
= 1

144. The inferred activity type O*
i can be further written as: 

p(Oi|c, t)∝p(t|Oi)p(Oi|c) (3)  

O*
i = argmaxip(t|Oi)p(Oi|c) (4)  

Fig. 6. Validation of inferred activities from Bayesian model with real-world data collected from Dianping for shopping (A) and drink & eat (B) type between 
7:00 and 22:00. We compared the time distribution of these two types of activities with a time granularity of 10 min and calculated the reconstruction accuracy as 
one minus mean absolute percentage error (MAPE) per hour. The dashed line represents the mean value of reconstruction accuracy. Our results demonstrate a high 
level of consistency and reconstruction accuracy (around 80%) with real-world human behavior. 
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5.2. Validation of Bayesian activity inference results 

Fig. 5C illustrates the temporal distribution of each activity type after 
inferring the user activity of XDRs via combining LBSN data and POIs. As 
can be seen, the temporal tendency of each activity after Bayesian 
inference keeps in alignment with the original temporal distribution of 
Foursquare check-ins (Fig. 5A). For example, the drink & eat activities 
have similar three peaks at 8:30, 12:30, and 20:30, corresponding to 
breakfast, lunch, and dinner time, respectively. 

We validate our inferred human activities by comparing them 
against actual data collected from Dianping. Similar to Yelp or Four-
square, Dianping allows users to “check-in” at businesses they visit, 
reflecting the real activity type of the user at that time. The check-in data 
we use includes anonymized user ID, the time and date of the check-in 
and the type of the business. Our primary objective is not only to 
accurately predict individual activity types but, more importantly, to 
reconstruct overall patterns at a citywide level and better understand 
human activity. On the other side, there is no activity records in our 
mobile phone datasets. Therefore, here we focus on validating whether 
the patterns we obtain are consistent with real-world behavior with 
Dianping data. 

Specifically, we collected users’ check-in records for shopping and 
drink & eat respectively every January from 2014 to 2020, as our mobile 
phone data were collected in January. We then compare the time dis-
tribution of these two types of activities with our reconstructed results to 
see if our model can infer the true patterns of human activity. When 

calculating the time distribution of our reconstructed activities, we 
consider the entire duration of the mobile user’s stay instead of just 
arrival time since users may check in at any point during their stays. 

In Fig. 6, we find that our reconstructed results are consistent with 
real-world human behaviors. For shopping activities, the fraction grad-
ually increases in the morning hours and maintains a high level in the 
afternoon and evening, gradually decreasing after 20:00. For drink & eat 
activities, there are two obvious peaks in the check-in data at around 
12:00 and 19:00, and our reconstruction results successfully captures 
this pattern. Further, we calculate the mean absolute percentage error 
(MAPE) per hour respectively and use one minus MAPE as a measure of 
reconstruction accuracy. Both types of activities demonstrate high 
reconstruction accuracy, around 80% in Fig. 6. Overall, our model can 
effectively capture the patterns of human activity on a large scale. 

6. Understanding the inferred activity patterns 

After inferring and validating the activity types in the user trajec-
tories from mobile phone data, we conduct further analysis on the 
reconstruction results to gain more insights into human activity 
behavior. One such insight is the identification of spatio-temporal pat-
terns inherent in the inferred activities. Specifically, we utilize the 
spatial information of work activities to infer the occupations of com-
muters, and use the temporal information to deduce the time use of 
Shanghai inhabitants. Additionally, we employ an LDA topic model to 
explore varied activity sequences and gain an understanding of different 
lifestyles of Shanghai residents. 

6.1. Spatio-temporal patterns of activities 

6.1.1. Profession distribution of commuters 
The POIs and previously inferred work locations enable us to infer the 

commuters’ professions. Understanding the distribution of professions 
facilitates further understanding of the economic structure and urban 
land use. With reference to the International Standard Industrial Clas-
sification of All Economic Activities (ISIC) and the industry classification 
in the Third Shanghai Economic Census, we classify POIs into 14 groups 
corresponding to 14 categories of occupations. For example, IT includes 
computer programming, the Internet and communications, etc; the so-
cial public includes health-related, government, environment-related, 
etc. Due to the limited information provided by POIs and XDRs, the 
possible occupations of commuters are only based on geographic loca-
tion and semantic. The candidate POIs for the profession are chosen with 
the Voronoi of base stations belonging to the work location. The con-
ditional probability of profession inference can be inferred by the cat-
egories’ proportion of the candidate POIs. When the POIs around the 
work locations are hazy or missed, the profession may be difficult to 
infer. Occupation is inferred as other in two cases, the selected poi of the 
work location is ambiguous or its category is other. As Fig. 7 presents the 
proportions of commuters in different professions, the largest proportion 
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Fig. 7. Distribution of professions of all commuters after Bayesian inference. Sale is the top profession in Shanghai. Manufacture is the second top, closely 
followed by catering. 

Time (hr)

Fig. 8. Comparison of stay duration of each activity for the commuters 
and non-commuters in the XDRs and the American Time Use Survey 
(ATUS). Note that there is no Pass-by in the ATUS. The left and right panels 
show the time use in U.S. and Shanghai, respectively. The non-commuters in 
Shanghai stay at home for a longer time than people in the U.S. The commuters 
in Shanghai stay longer time at both home and work than people in the U.S. In 
contrast, people in the U.S. spend more time for Leisure&Sport than our XDR 
users in Shanghai. 
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of commuters is actually unknown occupations. We compared the 
inferred results with the third Economic Census of Shanghai in 2013 
(Bureau of Statistics of Shanghai, 2015). Among commuters whose oc-
cupations are inferred clearly, those in sales occupations accounted for 
the largest proportion (close to 20%), consistent with the economic 
census, where the sales also accounted for the largest proportion 
(exceeding 15%). People working in social public accounted for 5.16% 
and those working in construction accounted for 4.4%, which is 
consistent with those in the economic census. In the Shanghai Economic 
Census, 4.4% of people work in social public, and 3.9% of people work in 
real estate. 

6.1.2. Daily time use analysis 
Based on the inferred activity types, we also compare the average 

time use distribution with the American Time Use Survey (ATUS, (U.S. 
Bureau of Labor Statistics, 2009)), as shown in Fig. 8. Covering 105 
million U.S. households aged 15 and older, ATUS provides nationally 
representative estimates of how, where, and with whom Americans 
spend their time. The left and right panels of Fig. 8 present the time use 
of different activities from ATUS and Shanghai, respectively. The darker 
and light colors present the time use behavior of commuters and non- 
commuters, respectively. The comparison shows that people in 
Shanghai spend more time at home and work than U.S. people. 
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Fig. 9. Joint distribution plot of duration and arrival time of the commuters (A) and non-commuters (B) for various activity types. The distributions of 
arrival and duration agree well with the reality. For example, drink & eat, leisure & sport and shopping often start around 7:00 PM for commuters, while these activities 
often start during the daytime for non-commuters. 
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Commuters in Shanghai work nearly 8 h per day on average, while 
people in the U.S. work around 6 h per day. We also observe that people 
in Shanghai spend less time on entertainment and dining activities than 
Americans while spending the opposite amount of time on family ac-
tivities. This indicates that Shanghai people prefer to engage in family 
activities than go out for socializing or entertainment during their free 
time. 

To compare the temporal characteristics of various activities, in 
Fig. 9, we show the joint distribution of the duration and arrival time for 
different activities for commuters and non-commuters, respectively. 
Most activities of commuters concentrate in some peak hours during one 
day. For example, commuters’ participation in leisure & sport or shopping 
activities peaks at around 19:00, while non-commuters have frequently 
activities from 12:00 to 20:00. Compared with commuters, non- 
commuters start earlier and last longer when engaging in entertain-
ment activities. Commuters’ drink & eat activities have three clusters in 
time, with peak hours at 8:00, 12:00, and 18:00, respectively corre-
sponding to three meal times. However, non-commuters’ only has two 
clusters with peak periods at 12:00 and 18:00, suggesting that com-
muters prefer to have breakfast outside than non-commuters. The 
transport activity of commuters has two clusters with marked peaks, 
representing the trips to work in the morning and from work in the 

afternoon. In contrast, the arrival time of non-commuters’ ranges from 
morning to night. Non-commuters start education activities mainly 
around 9:00 and 13:00, matching real-life habits, while commuters start 
education activities mainly at 9:00 and 18:00. The reason for commuters 
having an evening start time could be due to the fact that after work, 
some may attend educational institutions to learn interest courses such 
as dancing, musical instruments, etc. The availability of such courses in 
the evening follows their work schedule. 

We next examine the transition between different activities of the 
inhabitants, as presented in Fig. 10. Fig. 10A and C show the activity 
flow and transition matrix during the morning peak period respectively. 
Fig. 10A presents the average activity flow from 8:00 to 12:00 on 
weekdays. The proportion of residents visiting the workplace from 8:00 
to 10:00 increases significantly. At noon, a small fraction of workers 
return home. The labels on the left side in Fig. 10C indicates the activity 
users transit from and those on the bottom indicate the activity users 
transit to. The activity with the highest percentage of departures is home 
and the most significant transition is from home to work during the 
morning peak hours. Fig. 10B and D show the activity flow and transi-
tion matrix during the evening peak period, respectively. At 16:00, most 
people are at work. A part of people leave work and move to other places 
at 18:00. At 20:00, the probability of going home increases significantly, 
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but a few people are still at work. The most popular transition in the 
corresponding transfer matrix is from work to home. 

6.2. Different patterns of activity chain with LDA model 

6.2.1. LDA model and gibbs sampling 
The sequence of individual activity, a.k.a, activity chain, is an 

important feature of daily lives, reflecting daily behaviors and habits. 
Further insight into the residents’ behavior characteristics provides a 
new opportunity for enriching the urban activity model. To this end, we 
use a topic model to classify users into different groups based on their 
activity chains. Topic models are unsupervised machine learning models 
used in natural language processing (NLP). These models are usually 
used to discover topics that cannot be observed directly in texts. LDA 
(Blei et al., 2003) is one of the most widely used, assuming that each 
document includes a fixed number of implicit topics, and the topics are 
represented by the word distribution. LDA aggregates the same words in 
a large number of documents, gives the topics in each document in the 
form of the probability, and finally classifies the documents according to 
the topic distribution. 

We regard the activity sequence S of each user as a document and the 
activity type A in each time interval as a word. Thus, the category Z is 

equivalent to a topic. Suppose there are M users and V activity types in 
total, user m has Nm activity types in the activity sequence sm, where the 
topic of the n-th activity amn is zmn. In the LDA model, the activity type in 
each category obeys a multinomial distribution sampled from the 
Dirichlet prior distribution of the parameter β

→, and the category in each 
time use sequence follows the same distribution with the parameter α→. 
For each user’s activity sequence sm, its category distribution is: 

θm = Dirichlet( α→),

then, 

zmn = multi(θm),

Similarly, for each category k, its activity type distribution is: 

φk = Dirichlet( β
→
),

then, 

amn = multi(φzmn
).

The probability that an activity type is initialized to d can be calculated 
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as: 

p(amn = d| θm
̅→

,Φ) =
∑K

k=1
p(amn = d| φk

̅→)p(zmn = k|θm),

The likelihood function of the entire activity sequence is performed as 
the following: 

L =
∏M

m=1
p( am
̅→| θm

̅→
,φ) =

∏M

m=1

∏Nm

n=1
p(amn| θm

̅→
,φ)

Next, Gibbs Sampling (Wang, 2008) is used to solve the hidden variables 
zmn, θm

̅→
, φk
̅→ of LDA. Initially, each activity in the sequence is assigned a 

topic z0 randomly. We count the number of activity types d appearing 
under topic z and the number of categories z in the activity sequence of 
user m. Then the fully conditional posterior distribution p(zi|Z¬i,A) can 
be obtained, where Z¬i denotes all zj’s with j ∕= i and i, j are the activity 
indices in the activity sequence. With the probability distribution of the 
current activity type in all categories, a new category z1 is assigned to 
the activity based on the probability. The same procedure is repeated 
until the category distribution θm

̅→ of each activity sequence and the 
activity type distribution φk

̅→ of each category converge. And we can get 
the required parameters and the category of each activity. The proba-
bility formula of the category of current activity is: 

p(zi = k|Z¬i
̅→

, A→)∝
nt

k,¬i + βt

∑V

t=1
nt

k,¬i

(nk
m,¬i + αk),

where nt
k is count of activity t in all activities assigned topic k and nk

m is 
count of activity in sequence m assigned k. The subscript ¬i means that ai 
and zi are not included in the calculation. And the parameter calculation 
formula is performed as the following: 

φkt =
nt

k + βt
∑V

t=1
nt

k + βt

,

θmk =
nk

m + αk

∑K

k=1
nk

m + αk

.

6.2.2. Activity trajectory patterns analysis 
To model the users’ activity chains, we first flatten the user’s activity 

sequence with the equal time interval of half an hour based on the 
inferred activity types. The time range of the activity sequence is limited 
between 6:00 to 22:00 to select key activities, regardless of a large 
number of household activities at midnight. After comprehensive 
consideration of coherence within the topic, differences between topics 
in Appendix B and human judgment in Fig. 11A, we eventually assign 
the active mobile phone users into six groups and analyze the difference 
of their behavior in two aspects: daily travel distance and the number of 
daily visited locations. 

Fig. 11A illustrates the activity distributions of various groups. 
Among the six groups, people in group 0 participate in various activities 
in a balanced and active way and are labeled as active users. Group 1 is 
marked as leisure-led with the largest proportion of recreational activ-
ities in addition to home activities. Similarly, group 2 labeled as 
shopping-led has the largest proportion of shopping activities and people 
in group 3 are labeled as work-led users with the largest proportion of 
work activities. People in group 4 prefer to participate in education- 
related and daily life activities. They may include students and educa-
tors and are labeled as education-led users. Group 5 is purely home-led. 
As shown in Fig. 11B and C, the daily activity distances of work-led users 
and education-led users are relatively small in six groups, whereas the 
daily activity distances of entertainment-led users and active users are 
relatively large. Fig. 11C compares the average daily visit locations of 
different groups. The work-led and home-led users visit fewer locations 
per day, while active residents visit more. 

7. Discussion and conclusion 

With the advent of the big data era, people share their real-time lo-
cations to gain various types of services, offering an unprecedented 
opportunity to understand the population’s mobility behavior and their 

Fig. 12. Width of 75% confidence interval for different activity types from 7:00 to 22:00. Shopping activities have the narrowest confidence intervals, indicating 
stable and consistent inferred results. During the night, daily life and education activities exhibit narrower confidence intervals compared to daytime. However, this 
trend is reversed for drink & eat activities. The confidence interval width for leisure & sport activities remains constant throughout the day. 
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Fig. 14. Box plot of time distribution from 7:00 to 22:00 for each activity type. We randomly select 20 subsets from the mobile data, with each subset 
comprising 20% of the total users, and conduct the Bayesian inference model on each subset. 

L. Huang et al.                                                                                                                                                                                                                                  



Travel Behaviour and Society 33 (2023) 100606

14

interaction with the urban functions. With the most large coverage in 
population, mobile phone data have been widely used to model human 
mobility. However, coarsely localizing users with base stations results in 
the difficulty of inferring the activity details. Many research analyzed 
the LBSN data that have semantic information of their own to infer ac-
tivity types, and few studies explored human activity with mobile phone 
data. Most of them focus only on the related semantic information (POIs) 
such as the attractiveness and the available time. We propose to couple 
the mobile phone data with the POIs and LBSN data together. In addition 
to the relationship between the geographical environment and POIs, we 
also consider the attractiveness change of activities in different time-
slots. POIs data provides the geolocation of facilities and the LBSN data 
provides the temporal visitation pattern to various types of POIs. To this 
end, we devise a Bayesian model to assign each POI a possibility to visit 
for each trip in the mobile phone data. Taking Shanghai as an example, 
we first extract the trip chains of 1,000,000 anonymized users during 
two weeks with the XDR data. Combined with the 570,000 check-in 
items and more than 30,000 POIs, we are able to infer the activity 
type of the active mobile phone users in Shanghai. The validation results 
with a real-world check-in data show that our model has a high level of 
consistency and reconstruction accuracy (around 80%) with real-world 
human behavior. 

After inferring the activity types in the users’ trajectories on a large 
scale, we proceed to analyse the reconstructed outcomes from different 
aspects. Firstly, we analyze the temporal characteristics of each activity 
type and the average daily time use. We observe evident differences 
between commuters and non-commuters. For example, the drink & eat of 

commuters has three clear peak periods, whereas non-commuters have 
only two concentrated clusters in time; the leisure & sport and shopping of 
commuters start in the evening whereas the start time of non-commuters 
is distributed throughout the day. Next, via comparing the time use of 
the active mobile phone users in Shanghai with the American Time Use 
Survey, we find that the inhabitants in Shanghai work about one hour 
and a half longer on average than those in the United States. To un-
derstand the activities of different groups of people, we adopted a topic 
model, LDA, to group the users into six categories, reflecting their 
various lifestyles. We find that the work-led and home-led users have 
shorter travel distances and fewer visited locations on average per day 
and the leisure-led and active users show the opposite. 

It is noteworthy that, due to the lack of check-in data of population in 
Shanghai, we leverage the publicly available Foursequare data in Tokyo 
(Yang et al., 2014) as a proxy for the visitation pattern to different 
categories of POIs. We believe this assumption can be feasible as the 
proposed Bayesian method only utilizes the visitation frequency per 10 
min in our framework (as shown in Fig. 5A), and the lifestyle of popu-
lation in Shanghai and Tokyo is quite similar. We will quantitatively 
compare the similarity if data in Shanghai is available in future. In 
addition, although we have considered the temporal pattern of the 
visitation to different types of facilities, future research can be extended 
by improving the accuracy of user activity type inference, such as 
considering the interaction between different activity types and the 
capacity of different facilities or focusing on the study of specific activity 
schedules, such as commuting which are important trips during 
workdays.  

Appendix A. Performance of Bayesian inference model 

To demonstrate the performance of our Bayesian inference model, we randomly select 20 subsets from the original data, each containing 20% of 
mobile users, conduct the Bayesian inference model on each subset, and calculate confidence intervals for each activity type. A wider confidence 
interval indicates that there is more uncertainty in the model’s reconstruction results. Since home and work activity types are derived from daily life 
habits in 4.2 rather than inferred from Bayesian model, we mainly focus on the remaining activity types. 

In Fig. 12 and Fig. 14, we can see that regardless of whether the fraction of shopping activities is high or low, it has the narrowest confidence 
intervals, indicating that the inferred results for shopping activities are the most stable. Other than that, daily life and education activities have narrower 
confidence intervals at night than during the day while drink & eat activities are the opposite in Fig. 12. The confidence interval width for transport 
activities is similar throughout the day. 

Fig. 13. Analysis of LDA model. (A) Sensitivity analysis on the LDA model by altering three hyperparameters, including α, β and the number of topics. When α or β 
is symmetric, it means using a fixed symmetric prior of 1.0/ num_topics. When α is asymmetric, it uses a fixed normalized asymmetric prior of 1.0/ (topic_index  +
sqrt(num_topics)). When the number of topics is within the range of 4 to 7, the coherence score is relatively high. (B) Measurement of differences between pairwise 
topics. The bluer the grid on non-diagonal lines, the better, because this indicates a greater degree of differentiation and fewer intersections between the two topics. 
Our result demonstrates a high level of dissimilarity between each topic pair. 
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Appendix B. Sensitivity analysis of LDA model 

We perform a sensitivity analysis on the LDA model by altering its hyperparameters, including α,β, and the number of topics, in order to evaluate 
their impacts on the model’s performance. The number of topics is a crucial hyperparameter in LDA, as tailoring this parameter can determine the 
balance between fit and generalization. Hyperparameters α and β regulate the sparsity of document and topic distributions. To conduct our study, we 
examined six different α values (0.001, 0.031, 0.061, 0.091, ‘symmetric’, ‘asymmetric’), five β values (0.001, 0.031, 0.061, 0.091, ‘symmetric’), and 
ten distinct sets of topic numbers (ranging from 1 to 10). The LDA model’s performance is evaluated by the UMASS coherence score (Röder et al., 
2015) which measures the degree of semantic similarity between pairs of words within a chosen topic. A higher coherence score indicates that the 
topics generated by the LDA model have a higher degree of interpretability and represent meaningful themes within the corpus. 

Our findings, as presented in Fig. 13A, indicate that despite varying α and β values, the trend of coherence score changes is basically consistent. 
Specifically, when the number of topics is relatively low, coherence scores are similarly low. Once the number of topics exceeds 4, the change in 
coherence score tends to stabilize. But when the number of topics is too large, the coherence value actually decreases. Based on these results, as well as 
our own subjective assessment in Fig. 11A, we determine that a classification result of six topics produces a favorable LDA outcome. 

Furthermore, in addition to measuring the coherence score within the topic, we also use Hellinger distance (Arora et al., 2013) to measure the 
differences between the six types of topics. The result is demonstrated in Fig. 13B, with the colors of the grid representing the degree of correlation 
between the vertical and horizontal topics. Our results show a high degree of difference between each topic pair since all grid colors except diagonal 
are blue. 
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